Abstract
Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system (Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of cross-matching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.