Advancing energy density, enabling lithium metal anodes, and ensuring unparalleled safety and operational reliability in lithium batteries hinge on advancing inorganic solid-state electrolytes. To overcome current impediments, we present an innovative approach that integrates glass-ceramics with a pioneering new Nasicon strategy involving molybdenum doping. In the conducted study, a series of 14Li2O-9Al2O3-38TiO2-(39-x)P2O5-xMoO3 glasses, denoted as LATPMox, along with their corresponding glass-ceramics (LATPMox-GC), have exhibited a promising characteristic as solid electrolytes. X-ray diffraction (XRD) analysis confirms the formation of the novel Mo-doped Nasicon phases in the glass-ceramics, as validated by Rietveld refinement. Examination of the crystallization kinetic behavior of the glasses reveals a three-dimensional nucleation process with spherical particle growth, featuring an activation energy of 165 kJ mol−1. Transmission Electron Microscopy TEM characterization aligns crystallization behavior with crystallite and distribution within the glass matrix, resulting in a compact and dense microstructure. The structural properties of the resultant phases are examined through FT-IR, Raman spectroscopy, and TEM-SEAD analysis. Vickers indentation tests were employed to assess the microscopic fracture toughness, and both the glass and glass-ceramics materials demonstrated favorable mechanical performance. Optical characterization using UV–visible absorption highlights the reduction of Mo6+ to Mo5+, likely occupying tetrahedral sites within the crystalline lattice. Impedance spectroscopy measurement showcases the effective promotion of ionic conductivity following Mo doping, reaching a total conductivity value of 5.50 × 10−5 Ω−1 cm−1 along with a high lithium transference number of 0.99 at room temperature for LATPMo2.6-GC glass-ceramic. This value is larger than that of many other glass-ceramics as well as that of the well-known lithium phosphorous oxy-nitride LiPON solid electrolyte whose ionic conductivity at RT is around 2 × 10−6 Ω−1 cm−1.