In this paper, we develop a simple and fast algorithm for the time-domain acoustic scattering by a sound-soft or an impedance obstacle in three dimensions. We express the solution to the scattering problem by layer potentials, and then a time-domain boundary integral equation is derived. To numerically solve the resulting boundary integral equation, we propose a full discretization scheme by combining the convolution splines with a Galerkin method. In time, we approximate the density in a backward manner in terms of the convolution splines. In space, we project the density at each time onto the space of spherical harmonics, and then use the spatial discretization of a Nyström type on the surface of an obstacle which is homeomorphic to a sphere. A gallery of numerical examples are presented to show the efficiency of our algorithm. The stability, convergence and accuracy of the algorithm are discussed.
Read full abstract