Turbulent vortices with uneven refractive indices and sizes affect the transmission quality of laser beams in seawater, diminishing the performance of underwater wireless optical communication systems. Currently, the phase screen simulation model constrains the range of turbulent vortex scales that can be analyzed, and the mutual restrictions of the phase screen parameters are not suitable for use on large-scale turbulent vortices. Referring to the formation process of turbulent vortices based on Kolmogorov’s turbulence structure energy theory, this study abstractly models the process and simulates the ocean turbulence effect as a spherical bubble with turbulent refractive index fluctuations using the Monte Carlo method, which is verified by fitting the probability distribution function of the received light intensity. The influence of the turbulence bubble model’s parameters on light intensity undulation and logarithmic intensity variance, as well as the relationship between logarithmic intensity variance and the equivalent structural constant, are then studied. An equivalent structural constant model of ocean turbulence represented by the bubble model’s parameters is established, which link the theoretical values with simulation values of the transmission characteristics. The simulation results show that the spherical bubble model’s simulation of ocean turbulence is effective and accurate; therefore, the model can provide an effective Monte Carlo simulation method for analyzing the impact of ocean turbulence channel parameters of the large-scale turbulent vortices on wireless underwater optical transmission characteristics.
Read full abstract