The origin of the structural colors from several different examples of the weevil and longhorn families (Curculionidae and Cerambycidae, respectively) was investigated by structural and optical characterization techniques. A range of interesting three-dimensional photonic crystal structures operating at visible wavelengths was discovered, including both disordered and ordered non-close-packed lattices of cuticular spheres and bicontinuous diamond-based architectures. The discovered photonic structures display a large variation in lattice constants and dielectric filling fractions and thereby create optical reflectance colors spanning the entire visible range. To transform these bio-polymeric photonic crystals into heat and photo-stable inorganic structures, a low-temperature bio-templating method was developed. Using organic–inorganic hybrid silica sol–gel infiltration–templation chemistry combined with acid-etching template removal, stable inverse photonic structures were fabricated. The inverse structures display good structural quality and vivid reflection properties.
Read full abstract