The conservation of threatened vertebrate species and their threatened parasites requires an understanding of the factors influencing their distribution and dynamics. This is particularly important for species maintained in conservation reserves at high densities, where increased contact among hosts could lead to increased rates of parasitism. The tuatara (Sphenodon punctatus) (Reptilia: Sphenodontia) is a threatened reptile that persists at high densities in forests (approximately 2700 tuatara/ha) and lower densities in pastures and shrubland (< 200 tuatara/ha) on Stephens Island, New Zealand. We investigated the lifecycles and seasonal dynamics of infestation of two ectoparasites (the tuatara tick, Amblyomma sphenodonti, and trombiculid mites, Neotrombicula sp.) in a mark-recapture study in three forest study plots from November 2004 to March 2007, and compared infestation levels among habitat types in March 2006. Tick loads were lowest over summer and peaked from late autumn (May) until early spring (September). Mating and engorgement of female ticks was highest over spring, and larval tick loads subsequently increased in early autumn (March). Nymphal tick loads increased in September, and adult tick loads increased in May. Our findings suggest the tuatara tick has a 2- or 3-year lifecycle. Mite loads were highest over summer and autumn, and peaked in March. Prevalences (proportion of hosts infected) and densities (estimated number of parasites per hectare) of ticks were similar among habitats, but tick loads (parasites per host) were higher in pastures than in forests and shrub. The prevalence and density of mites was higher in forests than in pasture or shrub, but mite loads were similar among habitats. We suggest that a higher density of tuatara in forests may reduce the ectoparasite loads of individuals through a dilution effect. Understanding host-parasite dynamics will help in the conservation management of both the host and its parasites.