The present study was conducted to describe the major seminal plasma proteome of rabbits and potential associations between seminal proteins and semen criteria. Semen samples were collected from 18 New Zealand adult rabbits, and seminal plasma proteins were analyzed by 2-D SDS-PAGE and tandem mass spectrometry. Sperm motility, vigor, concentration, morphology and membrane sperm viability were evaluated. Rabbits ejaculated 364 ± 70 million sperm/ml, with 81 ± 6.1% motile cells, 3.8 ± 0.2 vigor and 66.7 ± 2.5% sperm with normal morphology. Based on the viability and acrosome integrity assay, there were 65.8 ± 2.5% live sperm with intact acrosome and most spermatozoa had both intact acrosome and functional membrane. On average, 2-D gels of rabbit seminal plasma had 232 ± 69.5 spots, as determined by PDQuest software (Bio Rad, USA). Mass spectrometry allowed the identification of 137 different proteins. The most abundant proteins in rabbit seminal plasma were hemoglobin subunit zeta-like, annexins, lipocalin, FAM115 protein and albumin. The intensity of the spots associated with these five proteins represented 71.5% of the intensity of all spots detected in the master gel. Multiple regression models were estimated using sperm traits as dependent variables and seminal plasma proteins as independent ones. Also, sperm motility had positive association with beta-nerve growth factor and cysteine-rich secretory protein 1-like and a negative one with galectin-1. The percentage of rabbit sperm with intact membrane was related to seminal plasma protein FAM115 complex and tropomyosin. Then, the population of morphologically normal sperm in rabbit semen was positively linked to carcinoembryonic antigen-related cell adhesion molecule 6-like and down regulated by seminal plasma isocitrate dehydrogenase. Based on another regression model, the variation in the percentage of live sperm with intact acrosome was partially explained by the amount of leukocyte elastase inhibitor and the peptidyl-prolyl cis-trans isomerase A in the rabbit seminal fluid. The current study reports the identification of 137 proteins of rabbit seminal plasma. Major proteins of seminal secretion relate primarily to prevention of damages caused by lipid peroxide radicals and oxidative stress, membrane functionality, transport of lipids to the sperm membrane and temperature regulation. Moreover, finding seminal plasma proteins as indicators of semen parameters will improve assisted reproductive technologies.