Seasonally regulated breeding in roe deer, Capreolus capreolus, is associated with significant changes in testis mass, structure and function. This study has quantified seasonal changes of morphometric parameters and cellular composition in roe deer testis parenchyma. Tissue samples were collected bimonthly during a complete annual cycle. Morphometric parameters of seminiferous tubules were measured and the number of different cell types was counted using a computer-aided image-analyzing system. A scheme of eight tubular epithelium stages for active spermatogenesis was devised according to the spermatid development. Stage I is characterized by the occurrence of new round spermatids, stage IV by spermiation and stage VIII by the meiotic division of spermatocytes. The average diameter of seminiferous tubules varied between 88.4+/-3.6 micro m (February) and 216.8+/-9.2 micro m (June). Also numbers of spermatogonia, spermatocytes and spermatids per tubule cross-section showed considerable seasonal changes. In December and February the germinative epithelium mainly consists of Sertoli cells and spermatogonia. In February, the first differentiated spermatogonia enter meiosis, and in April even spermatids occasionally occur, which reach their highest numbers during the rut in August. Both the expansion and the proportion of tubular and interstitial compartment change seasonally and result in differing cell densities. Assuming numerically constant populations of Sertoli cells and interstitial cells during the entire year, the hypothetical cell numbers per mm(2) of the tubular and interstitial areas were calculated for the seasonally variable total areas of tissue cross-sections. The concordance of these theoretical values with measured cell densities provided evidence that the total numbers of Sertoli cells, as well as interstitial cells, remain really constant throughout the seasonal cycle. The exact quantification of variable and constant components provides basic data for characterization of cell type and stage-specific processes of spermatogenesis.
Read full abstract