Cold injury to plants can occur by early fall freezes before cold acclimation, by severe midwinter freezes that exceed the limits of the plant's tolerance, or by hard freezes in late winter or early spring after partial or complete deacclimation. Ideally, blueberry (Vaccinium L.) cultivars for temperate regions should acclimate to cold quickly in the fall, have a high midwinter-hardiness, and deacclimate late and/or slowly during spring or during unseasonably warm spells in winter, and do all of this without adversely delaying time of fruiting. Until recently, only limited evaluations have been done on the acclimation and deacclimation process in blueberry, although it is an integral part of flower bud survival and, thus, is directly related to potential yield. In this study, we have measured the timing and rate of acclimation and deacclimation in seven blueberry genotypes with different amounts of diverse species germplasm in their backgrounds. Primary differences observed among the seven genotypes were differences in maximum hardiness levels and the date at which they were reached, and differences in the date at which maximum acclimation levels were no longer sustained and deacclimation started. Highbush cultivars Bluecrop and Legacy (V. corymbosum L.), rabbiteye cultivar Tifblue [V. ashei Reade (= V. virgatum Aiton)], and two rabbiteye hybrid derivatives (US 1043 and US 1056) all reached maximum or near maximum cold-hardiness by late December with temperatures causing 50% lethality (LT50) in a range from –22 to –27 °C. The half-high, ‘Northsky’, and a hybrid of V. constablaei Gray × V. ashei ‘Little Giant’ both achieved cold acclimation of –28 °C or below (the lowest value we could measure) by the end of November. After reaching their maximum hardiness in late December, ‘Legacy’, ‘Tifblue’, and US 1043 began a sustained and relatively linear deacclimation, whereas US 1056, ‘Bluecrop’, ‘Northsky’, and ‘Little Giant’ sustained their acclimation for longer intervals. ‘Bluecrop’ and US 1056 did not begin to deacclimate until early March, and ‘Little Giant’ and ‘Northsky’ had no LT50 values higher (warmer) than –25 °C until late March. As concerns about climate change increase, knowledge of the ability of breeding germplasm to tolerate greater temperature extremes and fluctuations will prove increasingly valuable.