Cyclone separation is a widely utilized separation technique, which enables the self-rotation behaviors of particles in the internal flow field, in order to realize high-performance separation of mixtures. Oily sludges are solid wastes generated by the shale gas industry, which need to be properly treated for environmental protection. In the present investigation, we demonstrated that tuning the inlet flow pattern of the cyclone from linear flow to vortex flow is an effective approach to boost the rotation speed of oily sludge particles for obtaining significantly improved separation effects. Numerical simulations were carried out to investigate the influences of inlet flow pattern on the rotation behaviors of particles, which manifested in the rotation speed of particles being evidently increased up to 4500 rad/s when the inlet flow was tuned from a unidirectional pattern into vortex pattern. The effective rotation zone’s area was also found to increase significantly, with the area of the effective rotation zone enlarged by up to 400%. Further separation experiments on oily sludge were carried out using a cyclone equipped with a worm shell that generated vortex inlet flow with rotating blades. Separation results confirmed that the oily sludge was successfully purified by the cyclone equipped with a worm shell, which provided an extremely high oil removal percentage of 99.9%, showing a 49.1% enhancement in oil removal capability over the individual cyclone separation. Our investigations demonstrated an effective method for realizing oily sludge treatment and oil resource recovery by conventional cyclone separation.
Read full abstract