Accurate channel state information (CSI) is important for MIMO systems, especially in a high-speed scenario, fast time-varying CSI tends to be out of date, and a change in CSI shows complex nonlinearities. The kernel recursive least-squares (KRLS) algorithm, which offers an attractive framework to deal with nonlinear problems, can be used in predicting nonlinear time-varying CSI. However, the network structure of the traditional KRLS algorithm grows as the training sample size increases, resulting in insufficient storage space and increasing computation when dealing with incoming data, which limits the online prediction of the KRLS algorithm. This paper proposed a new sparse sliding-window KRLS (SSW-KRLS) algorithm where a candidate discard set is selected through correlation analysis between the mapping vectors in the kernel Hilbert spaces of the new input sample and the existing samples in the kernel dictionary; then, the discarded sample is determined in combination with its corresponding output to achieve dynamic sample updates. Specifically, the proposed SSW-KRLS algorithm maintains the size of the kernel dictionary within the sample budget requires a fixed amount of memory and computation per time step, incorporates regularization, and achieves online prediction. Moreover, in order to sufficiently track the strongly changeable dynamic characteristics, a forgetting factor is considered in the proposed algorithm. Numerical simulations demonstrate that, under a realistic channel model of 3GPP in a rich scattering environment, our proposed algorithm achieved superior performance in terms of both predictive accuracy and kernel dictionary size than that of the ALD-KRLS algorithm. Our proposed SSW-KRLS algorithm with achieved 2 dB NMSE less than that of the ALD-KRLS algorithm with , while the kernel dictionary was about 17% smaller when the speed of the mobile user was 120 km/h.