Gamma TiAl alloys have attractive properties such as low density, high-temperature strength, and high modulus, oxidation, and burn resistance. As a result, these alloys have the potential to replace heavier superalloys in aircraft engine components. Gamma TiAl alloys were investigated in the 1950s but were too brittle for thermo-mechanical processing. However, interest in this class of material rekindled with several U.S. aerospace programs: the National Aerospace Plane, the Integrated High Performance Turbine Engine Technology, and Enabling Propulsion Materials/High Speed Civil Transport, as well as German hypersonic technology programs. Intense metallurgical and metal processing research during the last two decades led to significant progress in this area. As a result, gamma TiAl alloys are now available in all conventional product forms: ingots, forgings, extrusions, and sheets. This article reviews the current status of sheet gamma TiAl technology and its future opportunities.
Read full abstract