Despite the economic and social importance, high-yielding cassava cultivars are only released after extensive research, mainly due to the low multiplication rate. This study aimed to assess the impact of using smaller-sized seed cuttings treated with agrochemicals (8MP) compared to the conventional planting size (16 cm) on genetic parameters, agronomic performance, and the ranking of cassava clones based on yield and growth attributes. The evaluation was carried out in clonal evaluation trial (CET), preliminary yield trial (PYT), and uniform yield trials (UYT). Additionally, a new selection scheme for cassava breeding programs was proposed. A total of 169 clones were evaluated, including 154 improved clones at different stages of selection and 15 local varieties used as checks. Field trials were conducted using both sizes of propagative material (8MP and 16 cm) in each phase of the breeding program. The data were analyzed using mixed models, considering the random effects of genotype and genotype-environment interaction (G×E) to determine variances and heritabilities. Bland-Altman concordance and correlation analysis of selection indices were employed to examine the consistency in the ranking of cassava clones using different seed cutting sizes. The distribution of variance components, heritabilities, means, and range of the 8MP and 16 cm trials in different phases of the cassava breeding program exhibited remarkable similarity, thereby enabling a comparative assessment of similar genetic effects. With a selection intensity of 30%, the concordance in clone ranking was 0.41, 0.57, and 0.85 in CET, PYT, and UYT trials, respectively, when comparing the selection based on 8MP and 16 cm trials. It is worth noting that the ranking of the top 15% remained largely unchanged. Based on the findings, proposed changes in the cassava selection scheme involve increasing the number of trials starting from the CET phase, early incorporation of G×E interaction, elimination of the PYT trial, reduction of the breeding cycle from 5 to 3 years, and a decrease in the time required for variety development from 11 to 9 years. These modifications are expected to lead to cost reduction and enhance the effectiveness of cassava breeding programs.