Parity-time (PT) symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer (WPT) even in the presence of disturbances, through the incorporation of nonlinearity. However, the current PT-symmetric scheme falls short of achieving the theoretical maximum efficiency of WPT and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of WPT beyond the limits of symmetric approaches. By leveraging the gain spectrum interleaving resulting from dispersion, we observe a mode switching phenomenon in asymmetric systems similar to the symmetry-breaking effect. This phenomenon reshapes the distribution of resonance energy and enables more efficient WPT compared to conventional methods. Our findings open up new possibilities for harnessing dispersion effects in various domains such as electronics, microwaves, and optics. This work represents a significant step towards exploiting dispersion as a means to optimize WPT and lays the foundation for future advancements in these fields.
Read full abstract