We study the evolution and power spectrum of primordial gravitational waves in the interactive Bose-Einstein gas model for dark energy, relevant, as it addresses the coincidence problem. The model is applied in the radiation, matter and dark-energy domination stages. The model introduces a scale factor associated to the radiation-matter transition which influences the gravitational spectrum. We focus on the impact of the free parameters on both the gravitational waves amplitude and its power-spectrum slope. For sets of parameters fitting Hubble's law, we show that the model's parameter for today's dark-matter energy density has a noticeable impact on such waves, while the others produce an indistinguishable effect. The feasibility of detecting such waves under present and future measurements is discussed.
Read full abstract