Here, results on the tailored growth of monolayers (MLs) of transition metal dichalcogenides (TMDs) are presented using chemical vapor deposition (CVD) techniques. To enable reproducible growth, the flow of chalcogen precursors is controlled by Knudsen cells providing an advantage in comparison to the commonly used open crucible techniques. It is demonstrated that TMD MLs can be grown by CVD on large scale with structural, and therefore electronic, photonic and optoelectronic properties similar to TMD MLs are obtained by exfoliating bulk crystals. It is shown that besides the growth of the "standard" TMD MLs also the growth of MLs that are not available by the exfoliation is possible including examples like lateral TMD1-TMD2 ML heterostructures and Janus TMDs. Moreover, the CVD technique enables the growth of TMD MLs on various 3D substrates on large scale and with high quality. The intrinsic properties of the grown MLs are analyzed by complementary microscopy and spectroscopy techniques down to the nanoscale with a particular focus on the influence of structural defects. Their functional properties are studied in devices including field-effect transistors, photodetectors, wave guides and excitonic diodes. Finally, an outlook of the developed methodology in both applied and fundamental research is given.