The detection of Carbendazim (CBZ) insecticides has prompted concerns regarding their potential impacts on both human health and the environment. To address this issue, a novel nanocomposite comprising Zinc Vanadate (ZVO) was prepared using a common hydrothermal technique and incorporated with multi-walled carbon nanotube (MWCNT) to form ZVO/MWCNT nanocomposite. Thus, a glassy carbon electrode (GCE) has been modified using this ZVO/MWCNT nanocomposite, which offering a simple and affordable platform for the electrochemcial detection of CBZ. The structure and composition of the nanomaterial were confirmed through various microscopic and spectroscopic techniques, while its electrochemical characteristics were investigated using electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) techniques. The GCE/ZVO/MWCNT modified electrode exhibited a broad linear response ranging from 0.05 to 110μM, with a low detection limit of 0.005μM and high sensitivity (2.93 μA μM−1 cm−2), with recoveries ranging from 98% to 99.93%, respectively. Moreover, GCE/ZVO/MWCNT electrode demonstrated excellent stability, repeatability, and practical utility for CBZ detection. Based on electrochemical studies that indicate the formation of oxidized products consistent with a 2-electron transfer process. Therefore, this innovative GCE/ZVO/MWCNT modified electrode offers promising prospects for sensitive and selective CBZ determination, with potential applications in environmental monitoring and health protection.
Read full abstract