PurposeTo develop a structural metascore (SMS) that combines measurements from different devices and expresses them on a single scale to facilitate their long-term analysis.MethodsThree structural measurements (Heidelberg Retina Tomograph II [HRT] rim area, HD-Cirrus optical coherence tomography [OCT] average retinal nerve fiber layer [RNFL] thickness, Spectralis OCT RNFL global thickness) were normalized on a scale of 0 to 100 and converted to a reference value. The resultant metascores were plotted against time. SMS performance was evaluated to predict future values (internal validation), and correlations between the average grades assigned by three clinicians were compared with the SMS slopes (external validation).ResultsThe linear regression fit with the variance approach, and adjustment to a Spectralis equivalent was the best-performing approach; this was denominated metascore. Plots were created for 3416 eyes of 1824 patients. The average baseline age (± standard deviation) was 69.8 (±13.9), mean follow-up was 11.6 (±4.7) years, and mean number of structural scans per eye was 10.0 (±4.7). The mean numbers of scans per device were 3.8 (±2.5), 5.0 (±2.9), and 1.3 (±3.0) for HRT, Cirrus, and Spectralis, respectively. The metascore slopes’ median was −0.3 (interquartile range 1.1). Correlations between the average grades assigned by the three clinicians and the metascore slopes were −0.51, −0.49, and −0.69 for the first (structural measurement printouts alone), second (metascore plots alone), and third (printouts + metascore plots) series of gradings, respectively. The average absolute predictive ability was 7.63/100 (whereas 100 = entire normalized scale).ConclusionsWe report a method that converts Cirrus global RNFL and HRT global rim area normalized measurements to Spectralis global RNFL equivalent values to facilitate long-term structural follow-up.Translational RelevanceBecause glaucoma changes usually occur slowly, patients are often examined with different instruments during their follow-up, a method that “unifies” structural measurements provided by different devices, which could assist patients’ longitudinal structural follow-up.