In this paper, an efficient mixed spectral conjugate gradient (EMSCG, for short) method is presented for solving unconstrained optimization problems. In this work, we construct a novel formula performed by using a conjugate gradient parameter which takes into account the advantages of Fletcher–Reeves (FR), Polak–Ribiere–Polyak (PRP), and a variant Polak-Ribiere-Polyak (VPRP), prove its stability and convergence, and apply it to the dynamic force identification of practical engineering structure. The analysis results show that the present method has higher efficiency, stronger robust convergence quality, and fewer iterations. In addition, the proposed method can provide more efficient and numerically stable approximation of the actual force, compared with the FR method, PRP method, and VPRP method. Therefore, we can make a clear conclusion that the proposed method in this paper can provide an effective optimization solution. Meanwhile, there is reason to believe that the proposed method can offer a reference for future research.