This study is structured to address the problem of mapping the bottom of shallow and ultra-shallow inland water bodies using high-resolution satellite imagery. These environments, with their diverse distribution of optically relevant components, pose a challenge to traditional mapping methods. The study was conducted on several research issues, each focusing on a specific aspect of the SDB, related to the selection of spectral bands and regression models, regression models creation, evaluation of the influence of the number and spatial distribution of reference soundings, and assessment of the quality of the bathymetric surface, with a focus on microtopography. The study utilized basic empirical techniques, incorporating high-precision reference data acquired via an unmanned surface vessel (USV) integrated with a single-beam echosounder (SBES), and Global Navigation Satellite System (GNSS) receiver measurements. The performed investigation allowed the optimization of a methodology for bathymetry acquisition of such areas by identifying the impact of individual processing components. The first results indicated the usefulness of the proposed approach, which can be confirmed by the values of the obtained RMS errors of elaborated bathymetric surfaces in the range of up to several centimeters in some study cases. The work also points to the problematic nature of this type of study, which can contribute to further research into the application of remote sensing techniques for bathymetry, especially during acquisition in optically complex waters.
Read full abstract