This article proposes a curling pot shaped photonic crystal fiber (PCF) sensor based on surface plasmon resonance (SPR), which utilizes two parallel polished surfaces in the cladding to achieve dual parameter measurements of liquid refractive index (RI) and temperature. The mode characteristics and sensing performance of the designed PCF sensor are studied using the finite element method, and the effects of changes in structural parameters such as pore radius, spacing, and gold film thickness on the resonance spectrum are analyzed. The sensing accuracy of the sensor is insensitive to the change of structural parameters, and it has the characteristics of a wide detection range, high sensitivity, and easy manufacture. When the measured RI is in the range of 1.33∼1.42, the maximum RI sensitivity is 20400 nm RIU−1, and the maximum FOM is 483.3 RIU−1. When the temperature ranges from −10 °C to 100 °C, the maximum sensitivity is 15.4 nm °C−1, and the maximum FOM is 0.43 RIU−1. The tight structure design of the sensor core close to the polishing surface and the anti-spill light design with a uniform arrangement of air holes enhance the SPR effect, which is the essential reason for achieving a wide detection range and high sensitivity.