Thoracic and abdominal aortic aneurysm poses a substantial mortality risk in adults, yet many of its underlying factors remain unidentified. Here, we identify mitochondrial nicotinamide adenine dinucleotide (NAD)⁺ deficiency as a causal factor for the development of aortic aneurysm. Multiomics analysis of 150 surgical aortic specimens indicated impaired NAD+ salvage and mitochondrial transport in human thoracic aortic aneurysm, with expression of the NAD+ transporter SLC25A51 inversely correlating with disease severity and postoperative progression. Genome-wide gene-based association analysis further linked low SLC25A51 expression to risk of aortic aneurysm and dissection. In mouse models, smooth muscle-specific knockout of Nampt, Nmnat1, Nmnat3, Slc25a51, Nadk2 and Aldh18a1, genes involved in NAD+ salvage and transport, induced aortic aneurysm, with Slc25a51 deletion producing the most severe effects. Using these models, we suggest a mechanism that may explain the disease pathogenesis: the production of type III procollagen during aortic medial matrix turnover imposes a high demand for proline, an essential amino acid component of collagen. Deficiency in the mitochondrial NAD⁺ pool, regulated by NAD⁺ salvage and transport, hinders proline biosynthesis in mitochondria, contributing to thoracic and abdominal aortic aneurysm.
Read full abstract