The first symptoms of catecholaminergic polymorphic ventricular tachycardia (CPVT) usually occur in childhood and adolescence. 60% of patients experience syncope before the age of 40. Sudden cardiac death (SCD) is the first symptom of the disease in 30-50% of patients with CPVT. Early diagnosis is therefore crucial for the patient's prognosis. The diagnosis of CPVT is confirmed by a normal resting ECG, exclusion of structural heart disease, detection of bidirectional or polymorphic ventricular tachycardia (VT) in the stress ECG and/or detection of a pathogenic mutant in a gene associated with CPVT. Up to 60% of CPVT patients carry changes in the RYR2 gene. This gene encodes the cardiac ryanodine receptor, the most important Ca2+-releasing channel of the sarcoplasmic reticulum, which plays a central role in the contraction and relaxation of the heart muscle. If the function of the ryanodine receptor is impaired, too much calcium enters the cells, which triggers life-threatening arrhythmias. The overactive ryanodine receptor is therefore the main target for gene therapy methods. Even though the development of gene therapy is progressing, there is still no causal therapy available and it is all the more important to make a diagnosis as early as possible, which enables appropriate behavior and adequate symptomatic therapy. The decisive factor here is the evaluation of the genetic analysis in the context of the clinical findings. Based on this, recommendations can be made for preventive measures and the avoidance of specific triggers that could lead to life-threatening arrhythmias.