The skin microbiome, encompassing a variety of microorganisms, plays a critical role in skin health and function. Acne vulgaris, affecting approximately 9.4% of the global population, is a prevalent skin condition primarily targeting pilosebaceous units rich in sebaceous glands. The condition is influenced by factors such as hormonal changes, sebaceous gland dysfunction, and the activity of Cutibacterium acnes, a gram-positive bacterium linked to acne development. The skin's immune system, particularly keratinocytes with pattern recognition receptors like Toll-like receptors (TLRs), plays a crucial role in recognizing and responding to bacterial presence. The onset of acne is often linked to adolescence, marked by significant hormonal fluctuations. Genetics also plays a role, with family history being a notable risk factor. Acne is characterized by distinct alterations in the C. acnes composition, with specific phylotypes associated with either commensal or pathogenic behavior. Traditional treatments include antibiotics, but the rise of antibiotic resistance has led to exploring alternative therapies, such as bacteriophage therapy. Bacteriophages offer a targeted approach to treating acne by targeting C. acnes strains, potentially reducing antibiotic resistance and enhancing treatment efficacy. Phage therapy shows promise, but further research is needed to fully understand its effectiveness and potential in clinical applications. Additionally, combining phages with antibiotics may offer a synergistic approach to overcoming antibiotic resistance and managing acne.
Read full abstract