Cocoa drying is the post-harvest thermal process used to condition the beans to a moisture content between 6.5 and 7% for storage and further processing. Convective drying is an energy-intensive process where time and temperature are considered critical factors for the degradation of bioactive compounds in edible products. In the present study, the energy parameters, vibrational spectroscopy, and changes in bioactive compounds of cocoa beans were studied during thin-layer hot air drying at 50 °C, 60 °C, and 70 °C. Moisture loss, specific energy consumption (SEC), energy efficiency, total phenolics (TPs), total flavonoids (TFs), and antioxidant activity (DPPH) were determined. Fourier transform infrared (FT-IR) spectroscopy with attenuated total reflectance (ATR) was used to characterize the samples, and a multivariate analysis was applied to find interactions among the components. The obtained SEC was 18,947.30–24,469.51 kJ/kg, and the energy efficiency was 9.73–12.31%. When the temperature was 70 °C, the best values for SEC and energy efficiency were obtained. The results also showed that the convective drying generated changes in the TP levels for the three temperatures, mainly after 300 min, with maximum levels between 360 and 600 min, at 70 °C; however, it does not have a clear relationship with the TFs and the antioxidant activity. The FT-IR and the multivariate analysis revealed changes in several signals in the 1800 to 400 cm−1 range, confirming the variation in the associated signal with phenolic compounds.
Read full abstract