Graphites are widely used for their high electrical conductivity and good thermal and chemical stability. In this work, graphitic carbon-coated lithium titanium (Li4Ti5O12/GC) was successfully synthesized by a simple one-step solid-state reaction process with the assistance of sucrose without elevating sintering temperature. The lattice fringe of 0.208 nm clearly seen from the high-resolution transmission electron microscopy (HRTEM) images was assigned to graphite (010). The average grain size of the as-prepared Li4Ti5O12/GC was about 100–200 nm, 1 order smaller than that of pure Li4Ti5O12 prepared similarly. The rate performance and cycle ability were significantly improved by the hybrid conducting network formed by graphitic carbon on the grains and amorphous carbon between them. The specific capacity retention rate was 66.7 % when discharged at a rate of 12C compared with the capacity obtained at 0.5C. After 300 cycles, the capacity retention was more than 90 % at a high rate of 15C.
Read full abstract