The taxonomy of the Listeriaceae family has undergone substantial revisions, expanding the Listeria genus from 6 to 29 species since 2009. However, these classifications have relied on 16S rRNA gene sequences and conventional polyphasic taxonomy, with limited use of genomic approaches. This study aimed to employ genomic tools, including phylogenomics, Overall Genomic Relatedness Indices (OGRIs), and core-genome phylogenomic analyses, to reevaluate the taxonomy of the Listeriaceae family. The analyses involved the construction of phylogenetic and phylogenomic trees based on 16S rRNA gene sequences and core genomes from 34 type strain genomes belonging to Listeriaceae family. OGRIs, which encompass Average Amino acid Identity (AAI), core-proteome AAI (cAAI), and Percentage of Conserved Proteins (POCP), were calculated, and specific threshold values of 70%, 87%, and 72-73% were established, respectively, to delimitate genera in the Listeriaceae family. These newly proposed OGRI thresholds unveiled distinct evolutionary lineages. The outcomes of this taxonomic re-evaluation were: (i): the division of the Listeria genus into an emended Listeria genus regrouping only Listeria senso stricto species; (ii): the remaining Listeria senso lato species were transferred into three newly proposed genera: Murraya gen. nov., Mesolisteria gen. nov., and Paenilisteria gen. nov. within Listeriaceae; (iii): Brochothrix was transferred to the newly proposed family Brochothricaceae fam. nov. within the Caryophanales order; (iiii): Listeria ivanovii subsp. londonensis was elevated to the species level as Listeria londonensis sp. nov.; and (iiiii): Murraya murrayi comb. nov. was reclassified as a later heterotypic synonym of Murraya grayi comb. nov. This taxonomic framework enables more precise identification of pathogenic Listeriaceae species, with significant implications for important areas such as food safety, clinical diagnostics, epidemiology, and public health.
Read full abstract