We investigated the impact of nitrogen (N), phosphorus (P), potassium (K) (NPK) and NPK plus glucose-balanced fertilization compared with N-only fertilization on the soil pH, NH4 +, NO3 −, ammonia-oxidizing bacterial community, bacterial community and function during microcosm incubation. The NPK and NPK plus glucose treatments resulted in significantly reducing soil acidification and NO3 − accumulation compared with the N-only fertilization. The terminal restriction fragment size measuring 283 (Nitrosospira) and 54 bp (unidentified) were predominant in the soil ammonia-oxidizing bacterial composition for all treatments. The N-only fertilization did not change the ammonia-oxidizing bacterial community, the bacterial community composition based on terminal restriction fragment length polymorphism analysis, and the bacterial functional diversity based on Biolog EcoPlateTM incubation. The NPK and NPK plus glucose treatments resulted in a shift in the soil ammonia-oxidizing bacterial community and bacterial community composition, and significantly increased the bacterial functional diversity (average well colour development, Richness and Shannon index). Nitrosomonas species were detected in the soil upon NPK and NPK plus glucose treatment on incubation day 9 but not on days 1 and 31. The effect of NPK treatment on the bacterial community composition was transient; a new 116 bp fragment was present on incubation day 9, but the data returned to their original values by day 31. In contrast, treatment with NPK plus glucose resulted in the appearance of a new 116 bp fragment that remained until incubation day 31. These results demonstrated that the balanced fertilization of N, P, K and glucose, plays an important role in regulating ammonia-oxidizing bacterial community quickly, and promoting nitrification functions. The results also showed the importance of balanced fertilization in reducing acidification, improving bacterial community structure and function in latosolic red soil. Therefore, optimizing the ammonia oxidation process by balanced fertilization may be helpful to reduce the loss of soil nitrogen.
Read full abstract