Protein phosphorylation is essential in various signal transduction and cellular processes. To date, most tools are designed for model organisms, but only a handful of methods are suitable for predicting task in fungal species, and their performance still leaves much to be desired. In this study, a novel tool called MFPSP is developed for phosphorylation site prediction in multi-fungal species. The amino acids sequence features were derived from physicochemical and distributed information, and an offspring competition-based genetic algorithm was applied for choosing the most effective feature subset. The comparison results shown that MFPSP achieves a more advanced and balanced performance to several state-of-the-art available toolkits. Feature contribution and interaction exploration indicating the proposed model is efficient in uncovering concealed patterns within sequence. We anticipate MFPSP to serve as a valuable bioinformatics tool and benefiting practical experiments by pre-screening potential phosphorylation sites and enhancing our functional understanding of phosphorylation modifications in fungi. The source code and datasets are accessible at https://github.com/AI4HKB/MFPSP/.
Read full abstract