Abstract

Protein phosphorylation is essential in various signal transduction and cellular processes. To date, most tools are designed for model organisms, but only a handful of methods are suitable for predicting task in fungal species, and their performance still leaves much to be desired. In this study, a novel tool called MFPSP is developed for phosphorylation site prediction in multi-fungal species. The amino acids sequence features were derived from physicochemical and distributed information, and an offspring competition-based genetic algorithm was applied for choosing the most effective feature subset. The comparison results shown that MFPSP achieves a more advanced and balanced performance to several state-of-the-art available toolkits. Feature contribution and interaction exploration indicating the proposed model is efficient in uncovering concealed patterns within sequence. We anticipate MFPSP to serve as a valuable bioinformatics tool and benefiting practical experiments by pre-screening potential phosphorylation sites and enhancing our functional understanding of phosphorylation modifications in fungi. The source code and datasets are accessible at https://github.com/AI4HKB/MFPSP/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.