During an investigations on Monosporascus cannonballus, the causal agent of root rot and vine decline of melons, in 1999, a previously unknown rhizosphere fungus was encountered in the desert soils of southern California. The fungus, herein named Desertella arida Stanghellini & Mohammadi sp. nov., was associated with roots of diverse plants including brassica (Sahara mustard (Brassica tournefortii), shepherd's purse (Capsella bursa-pastoris)) and plantain (Plantago ovata Forsk). The fungus forms extensive multinucleate, septate hyphae (6–17 μm in diameter) bearing hundreds of large spherical to pear-shaped unicellular asexual spores (50–120 μm in diameter), either singly or in large clusters. The spores are beige to cream-colored, thin-walled, and contain a dense, granular cytoplasm. Further investigation on the distribution of D. arida in soils of desert habitats in the southwestern USA led to the discovery of a second fungus belonging to a different species herein named Desertella americanense Mohammadi & Stanghellini sp. nov., in California, Arizona, Nevada, and Utah. The two species are morphologically similar. Spores from both fungi in native soil survived heat treatment up to 100 °C. Both species are culturable and colonized roots of monocots and dicots forming abundant hyphae and spores as early as 10 days post-inoculation. Desertella arida significantly enhanced shoot growth in broccoli, lettuce, Plantago ovata and flax. In conclusion, we discovered two desert-dwelling ascomycete fungi that were associated with the roots of native plant species in southern California. They were culturable on a synthetic medium, heat-tolerant and promoted growth on several crop species. These fungi appeared to exist in other neighboring states such as Arizona and Nevada.
Read full abstract