Abstract

Accumulating evidence suggests that enzootic transmission of pathogens such as West Nile virus (WNV) by mosquitoes is governed by host-bird interactions, including mosquito preferences for specific species and developmental stages of host birds, host bird availability, and host defensive behavior. Here, we examined how the attack rate of five mosquito species in southern California was influenced by the position of CO2-baited traps in relation to distance from water and trap height. We identified 44,207 female mosquitoes representing five species: Aedes vexans Meigen, Anopheles franciscanus McCracken, Anopheles hermsi Barr & Guptavanij, and the two most abundant species which are also WNV vectors, Culex erythrothorax Dyar and Culex tarsalis Coquillett. Mosquito captures decreased markedly with trap height, and also decreased with distance from a riparian area but not with distance from an open water source lacking a vegetated border. The results of this study suggest that WNV-competent ornithophilic mosquitoes may amplify the virus especially in reservoir birds that roost or nest close to the ground and near riparian vegetation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.