Argonauts or paper nautiluses are pelagic octopod cephalopods with a cosmopolitan distribution in tropical and subtropical waters around the world. Unlike other species of octopus, these are characterized by the fact that the female has a shell that serves as the breeding chamber for the eggs. Over time, this structure has been used as a taxonomic diagnostic character, causing problems in the systematics of this genus, with around 50 synonymies reported. Only two species, Argonauta argo and A. nouryi, have been reported in the Northern Humboldt Current System; however, there is taxonomic uncertainty regarding these species, which is reflected in the paralarvae (the first stage of life after hatching). In the paralarvae, the chromatophore patterns are considered to be conservative and reliable taxonomic characteristics. The objective of this study is to demonstrate the extensive variability in the chromatophore arrangement of Argonauta paralarvae in the Northern Humboldt Current using DNA barcoding and five species delimitation models. Our results include up to 11 different paralarvae morphotypes according to the pattern of chromatophores (number and arrangement) and 2 shell morphotypes. Species delimitation methods divided the 13 Argonauta morphotypes into two consensus molecular taxonomic units (MOTUs), A. argo and A. nouryi. Additionally, the results revealed an extensive morphological variability in the paralarvae and female shells of A. nouryi, demonstrating the importance of molecular data in studies involving species with different life stages, especially when this extensive morphological variability obscures conventional analyses.