Distributions of plants are expected to change in response to climate change, but the relative probability of that change is often unknown. Curl-leaf mountain mahogany (Cercocarpus ledifolius), an important browse species used by ungulates as forage and cover across the western US, is thought to be moderately to highly vulnerable to climate change this century, and a reduction in curl-leaf mountain mahogany occurrence may negatively impact ungulates reliant upon it. A combination of probability density estimation and vector analysis was used to predict curl-leaf mountain mahogany distribution across the species range relative to climate space and how that relationship would affect curl-leaf mountain mahogany at a local scale. Locally, we used the curl-leaf mountain mahogany population at the Bighorn Canyon National Recreation Area (BICA) in Montana and Wyoming for comparison. We modeled the probability of curl-leaf mountain mahogany occurrence across its distribution using water balance data to spatially and temporally assess the vulnerability of a population at a local scale. Modeled probabilities of occurrence and vector analysis indicated the species to remain in some areas within BICA but will be vulnerable in others given the predicted changes in temperature and precipitation in BICA if historical trajectories continue. This information allows managers to direct limited resources to other management actions by using the best available science to inform decisions. Other curl-leaf mountain mahogany populations currently inhabiting wetter, drier sites may follow a similar trajectory as the effects of climate change manifest. The approach used serves as a model to assess the predicted trend for species-specific plant communities of concern that may be adversely affected by climate change.
Read full abstract