A poet might say that each human being's heart is a unique mystery. Those of us working in the brand new field of computational medicine, however, can now model each of those unique hearts with marvelous accuracy and reveal their secrets. In my laboratory at Johns Hopkins University, my team creates computer models to simulate individual patients' hearts, which can help cardiologists carry out lifesaving treatments. Such models may soon transform medicine, ushering in a new kind of personalized health care with radically improved outcomes. . Biomedical engineers have learned how to use numerical models to generate increasingly sophisticated “virtual organs” over the past decade, and rapid developments in cardiac simulation have made the virtual heart the most complete model of all. It's a complex replica, as it must mimic the heart's workings at the molecular scale, through the cellular scale, and up to the level of the whole organ, where muscle tissue expands and contracts with every heartbeat. What's more, the modeling at these different scales must be tightly integrated to accurately render the constant feedback interactions that govern the functions of the heart.Such models have already proved their value for basic cardiac research, allowing scientists to plug in experimental data and study what goes on in both normal and diseased hearts. Now, virtual hearts are poised to deliver breakthroughs at the bedside. Starting with a patient's MRI scans, specialists in computational cardiology can create a personalized model of the patient's heart to study his or her unique ailment. Doctors can then poke and prod the computerized organ in ways that simply aren't possible with a flesh-andblood heart. With these models at their disposal, cardiologists should be able to improve therapies, minimize the invasiveness of diagnostic procedures, and reduce health-care costs. While this simulation-based medicine is still in the experimental stages, I believe upcoming clinical trials will show the real value of virtual hearts.