An accurate and locking-free geometric exact beam formulation (GEBF) on the special orthogonal group SO(3) is developed for slender beams with large deformations and large rotations. Due to the nonlinear nature of the spatial rotations, the classical GEBFs usually have a non-constant mass matrix and complex expressions of inertia forces; meanwhile, the singularity and locking issues are also key matters of concern. Aiming at resolving these drawbacks, two main contributions are achieved in the present work. First, the angular velocity is independently interpolated, resulting in a constant mass matrix and explicitly representable inertial forces, which can offer significant advantages for efficient dynamic simulations. Second, inspired by the assumed natural strain method in shell theory, the stretch-shear strain is interpolated to obtain simplified and locking-free elastic forces, which is a new attempt to alleviate the locking problems for the GEBFs. In addition, the special orthogonal group SO(3) is utilized for updating incremental rotation vectors to eliminate singularities, and objective strain measurement is achieved by employing relative rotation vector interpolation. The effectiveness and superiority of the developed low-order and high-order elements are demonstrated through numerical simulations of standard benchmark examples. The present work contributes to the advancement of accurate and reliable formulation for slender beams; the constant mass matrix, the locking-free characteristics, and the elegant form of the formulation make it particularly suitable for multibody dynamic analysis.
Read full abstract