Abstract
In this paper, we deal with non-degenerate translators of the mean curvature flow in the well-known Einstein's static universe. We focus on the rotationally invariant translators, that is, those invariant by a natural isometric action of the special orthogonal group on the ambient space. In the classification list, there are three space-like cases and five time-like cases. All of them, except a totally geodesic example, have one or two conic singularities. Also, we show a uniqueness result based on the behaviour of the translator on its boundary. As an application, we extend an isometry of the sphere to the whole translator under simple conditions. This leads to a characterization of a bowl-like example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.