Speaker identification systems perform well under the neutral talking condition; however, they suffer sharp degradation under the shouted talking condition. In this paper, the second-order hidden Markov models (HMM2s) have been used to improve the recognition performance of isolated-word text-dependent speaker identification systems under the shouted talking condition. Our results show that HMM2s significantly improve the speaker identification performance compared to the first-order hidden Markov models (HMM1s). The average speaker identification performance under the shouted talking condition based on HMM1s is. On the other hand, the average speaker identification performance based on HMM2s is.
Read full abstract