As the global aquaculture industry grows, attention is increasingly turning towards assisted reproductive technologies. In this study, we examined the impact of D-Ala6, Pro9-Net-mGnRH (LHRHa: 0.4 mL/kg) and two doses (1 and 10 μg/kg fish) of thyroxin (T4) administered through a single injection on oocyte maturation, spawning performance, sex steroid hormone levels, as well as the expression of genes related to steroidogenesis and follicle development (ZP2, Cyp19a1a and SF-1) in Rohu (Labeo rohita). The study found that untreated female Rohu did not spawn, while those treated with LHRHa and thyroxin ovulated and spawned across a hormonal gradient. The highest spawning success was observed with a thyroxin dosage of 10 µg/kg (no significant change with a dose of 1 μg/kg), and female latency period decreased with increasing dosage. Additionally, females treated with thyroxin exhibited significantly higher fecundity than other experimental groups. Treatment with LHRHa and two doses of thyroxin significantly increased the gonadal somatic index compared to the control and sham groups. Hormonal treatment also led to increased fertilization success, hatching rate, and larval survival. At 12 h post-injection, females treated with thyroxin exhibited a significant decline in estradiol levels and expression of Zp2, Cyp19a1a, and SF-1 compared to other experimental groups. Levels of DHP significantly increased across the hormonal gradient. Histological analyses supported a steroidogenic shift, where oocyte maturation was accelerated by hormone administration, particularly with both doses of thyroxin. In conclusion, the findings suggest that thyroxin is a recommended treatment for assisted reproduction of Rohu due to its ability to induce spawning, increase fecundity and improve larval survival.
Read full abstract