This study investigates the dynamic changes in wheat canopy spectral characteristics across seven critical growth stages (Tillering, Pre-Jointing, Jointing, Post-Jointing, Booting, Flowering, and Ripening) using UAV-based multispectral remote sensing. By analyzing four key spectral bands—green (G), red (R), red-edge (RE), and near-infrared (NIR)—and their combinations, we identify spectral features that reflect changes in canopy activity, health, and structure. Results show that the green band is highly sensitive to chlorophyll activity and low canopy coverage during the Tillering stage, while the NIR band captures structural complexity and canopy density during the Jointing and Booting stages. The combination of G and NIR bands reveals increased canopy density and spectral concentration during the Booting stage, while the RE band effectively detects plant senescence and reduced spectral uniformity during the ripening stage. Time-series analysis of spectral data across growth stages improves the accuracy of growth stage identification, with dynamic spectral changes offering insights into growth inflection points. Spatially, the study demonstrates the potential for identifying field-level anomalies, such as water stress or disease, providing actionable data for targeted interventions. This comprehensive spatio-temporal monitoring framework improves crop management and offers a cost-effective, precise solution for disease prediction, yield forecasting, and resource optimization. The study paves the way for integrating UAV remote sensing into precision agriculture practices, with future research focusing on hyperspectral data integration to enhance monitoring models.
Read full abstract