Neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) generate neurons and glia throughout life. MicroRNAs are important post-transcriptional regulators frequently acting in a context-dependent manner. Here, microRNA profiling defines cohorts of miRNAs in quiescent and activated NSCs, with miR-17∼92 highly upregulated in activated NSCs and transit amplifying cells (TACs) versus quiescent NSCs. Conditional miR-17∼92 deletion in the adult V-SVZ results in stage-specific effects. In NSCs, it reduces proliferation invitro and invivo, whereas in TACs, it selectively shifts neurogenic OLIG2- DLX2+ toward oligodendrogenic OLIG2+ DLX2- TACs, due to de-repression of an oligodendrogenic program, leading to increased oligodendrogenesis invivo. This differential regulation of TAC subpopulations highlights the importance of TAC heterogeneity. Finally, in the NSC lineage for intraventricular oligodendrocyte progenitors, miR-17∼92 deletion decreases proliferation and maturation. Together, these findings reveal multiple stage-specific functions of the miR-17∼92 cluster within different adult V-SVZ lineages.
Read full abstract