AbstractThe interface of common III‐V semiconductors InAs and GaSb can be utilized to realize a two‐dimensional (2D) topological insulator state. The 2D electronic gas at this interface can yield Hall quantization from coexisting electrons and holes. This anomaly is a determining factor in the fundamental origin of the topological state in InAs/GaSb. Here, the coexistence of electrons and holes in InAs/GaSb is tied to the chemical sharpness of the interface. Magnetotransport, in samples of Mn‐doped InAs/GaSb cleaved from wafers grown at a spatially inhomogeneous substrate temperature, is studied. It is reported that the observation of quantum oscillations and a quantized Hall effect whose behavior, exhibiting coexisting electrons and holes, is tuned by this spatial nonuniformity. Through transmission electron microscopy measurements, it is additionally found that samples that host this co‐existence exhibit a chemical intermixing between group III and group V atoms that extends over a larger thickness about the interface. The issue of intermixing at the interface is systematically overlooked in electronic transport studies of topological InAs/GaSb. These findings address this gap in knowledge and shed important light on the origin of the anomalous behavior of quantum oscillations seen in this 2D topological insulator.