The traditional susceptibility evaluation of geological hazards usually comprises a global susceptibility evaluation of the entire study area but ignores the differences between the local areas caused by spatial non-stationarity. In view of this, the geographically weighted regression model (GWR) was used to divide the study area at regional scale. Seven local areas were obtained with low spatial auto-correlation of each evaluation factor. Additionally, 11 evaluation factors, including the aspect, elevation, curvature, ground roughness, relief amplitude, slope, lithology, distance from the fault, height of the cut slope, multiyear average rainfall and the normalized difference vegetation index (NDVI) were selected to establish the evaluation index system of the geological hazard susceptibility. The Pearson coefficient was used to remove the evaluation factors with high correlation. The global and seven local areas were evaluated for susceptibility using the information value model and the global and regional division susceptibility evaluation results were obtained. The results show that the regional division information value model had better prediction performance (AUC = 0.893) and better accuracy. This model adequately considers the influence of the geological hazard impact factors in the different local areas on geological hazard susceptibility and weakens the influence of some factors that have higher influence in the global model but lower influence in local areas on the evaluation results. Therefore, the use of the regional division information value model for susceptibility evaluation is more consistent with the actual situation in the study area and is more suitable for guiding risk management and hazard prevention and mitigation.
Read full abstract