There is extensive evidence that network structure (e.g., air transport, rivers, or roads) may significantly enhance the spread of epidemics into the surrounding geographical area. A new compartmental modeling framework is proposed which couples well-mixed (ODE in time) population centers at the vertices, 1D travel routes on the graph's edges, and a 2D continuum containing the rest of the population to simulate how an infection spreads through a population. The edge equations are coupled to the vertex ODEs through junction conditions, while the domain equations are coupled to the edges through boundary conditions. A numerical method based on spatial finite differences for the edges and finite elements in the 2D domain is described to approximate the model, and numerical verification of the method is provided. The model is illustrated on two simple and one complex example geometries, and a parameter study example is performed. The observed solutions exhibit exponential decay after a certain time has passed, and the cumulative infected population over the vertices, edges, and domain tends to a constant in time but varying in space, i.e., a steady state solution.