Abstract

ABSTRACTUnder the United States Clean Water Act, states are required to periodically assess state waters to determine compliance with water quality criteria (including temperature) and then to develop total maximum daily loads (TMDLs) for impaired waters as necessary to bring them into compliance. We compared the performance of mechanistic stream temperature models (HeatSource, QUAL2K, and QUAL2Kw) applied to the mainstem of three TMDL watersheds (Middle Fork John Day, OR; Wind River, WA; South Fork Nooksack, WA) with that of spatial stream network (SSN) models applied to the full watersheds and used these to evaluate the potential effectiveness of restoration strategies. SSN models performed well with slightly lesser accuracy (RMSE = 0.47–0.87) for mainstem predictions than mechanistic models (RMSE = 0.4) but provided additional benefits to inform management, including information on spatial and temporal heterogeneity of restoration effectiveness throughout the watershed. Of the four scenarios considered (restoration of riparian zones to potential natural vegetation, channel narrowing, increasing flow by restricting irrigation withdrawals, and combined applications), riparian zone restoration was consistently the most effective in reducing temperatures at the outlet, mainstem, and throughout the watersheds. Predicted restoration effectiveness for thermal regimes varied significantly both within and among watersheds. A focus on water quality criteria exceedance only at the watershed outlet or along the mainstem reach can obscure knowledge of restoration potential for fish habitat in tributaries and headwaters, potential for creation of thermal refuge areas along the mainstem critical for maintaining migration corridors, and thermal regime heterogeneity across space and time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.