Background and PurposeHereditary spastic paraplegia (HSP) is a genetically heterogeneous group of neurodegenerative disorders that are characterized by progressive spasticity and weakness of the lower limbs. Mutations in the spastin gene (SPAST) are the most common causes of HSP, accounting for 40-67% of autosomal dominant HSP (AD-HSP) and 12-18% of sporadic cases. Mutations in the atlastin-1 gene (ATL1) and receptor expression-enhancing protein 1 gene (REEP1) are the second and third most common causes of AD-HSP, respectively.MethodsDirect sequence analysis was used to screen mutations in SPAST, ATL1, and REEP1 in 27 unrelated Korean patients with pure and complicated HSP. Multiplex ligation-dependent probe amplification was also performed to detect copy-number variations of the three genes.ResultsTen different SPAST mutations were identified in 11 probands, of which the following 6 were novel: c.760A>T, c.131C>A, c.1351_1353delAGA, c.376_377dupTA, c.1114A>G, and c.1372A>C. Most patients with SPAST mutations had AD-HSP (10/11, 91%), and the frequency of SPAST mutations accounted for 66.7% (10/15) of the AD-HSP patients. No significant correlation was found between the presence of the SPAST mutation and any of the various clinical parameters of pure HSP. No ATL1 and REEP1 mutations were detected.ConclusionsWe conclude that SPAST mutations are responsible for most Korean cases of genetically confirmed AD-HSP. Our observation of the absence of ATL1 and REEP1 mutations needs to be confirmed in larger series.
Read full abstract