The field of compressive sensing (CS) has emerged as a transformative approach in the acquisition and processing of high-dimensional data. This paper presents a comprehensive study on the application of compressive sensing techniques to advanced image processing and digital image transmission. By leveraging the inherent sparsity in natural images, CS allows for significant reductions in the amount of data required for accurate reconstruction, thereby overcoming the limitations imposed by the traditional Shannon-Nyquist sampling theorem. We explore the theoretical foundations of CS, including the principles of sparsity and incoherence, and provide a detailed overview of the Orthogonal Matching Pursuit (OMP) algorithm, a prominent greedy algorithm used for sparse signal recovery. Experimental results demonstrate the efficacy of CS in improving image reconstruction quality, as evidenced by enhancements in peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Additionally, we discuss the practical implementation of CS in single-pixel cameras and its potential impact on future imaging technologies. The findings suggest that CS offers a robust framework for efficient image acquisition and processing, making it a valuable tool for various applications in multimedia, medical imaging, and remote sensing.
Read full abstract