In recent years, sparse representation-based classification (SRC) has received significant attention due to its high recognition rate. However, the original SRC method requires a rigid alignment, which is crucial for its application. Therefore, features such as SIFT descriptors are introduced into the SRC method, resulting in an alignment-free method. However, a feature-based dictionary always contains considerable useful information for recognition. We explore the relationship of the similarity of the SIFT descriptors to multitask recognition and propose a clustering-weighted SIFT-based SRC method (CWS-SRC). The proposed approach is considerably more suitable for multitask recognition with sufficient samples. Using two public face databases (AR and Yale face) and a self-built car-model database, the performance of the proposed method is evaluated and compared to that of the SRC, SIFT matching, and MKD-SRC methods. Experimental results indicate that the proposed method exhibits better performance in the alignment-free scenario with sufficient samples.
Read full abstract