In this paper, we give an overview and an update on the recent progress of our research group in numerical model of Maxwell equations in three dimensions (NMM3D) on random rough surfaces and discrete random media and their applications in active and passive microwave remote sensing. The random rough surface models were applied to soil surfaces and ocean surfaces. The discrete random media models were applied to snow and vegetation. For rough surface scattering, we use the surface integral equations of Poggio–Miller–Chang–Harrington–Wu–Tsai that are solved by the method of moments using the Rao–Wilton–Glisson basis functions. The sparse matrix canonical grid method is used to accelerate the matrix column multiplications. In modeling the rough surfaces, we use the exponential correlation functions for soil surfaces and the Durden–Vesecky ocean spectrum for ocean surfaces. In scattering by terrestrial snow and snow on sea ice, we use the volume integral equations formulated with the dyadic half-space Green's function. The microstructure of snow is modeled by the bicontinuous media. In scattering by vegetation, we use the discrete scatterers of cylinder. The NMM3D formulation is based on the Foldy–Lax multiple scattering equations in conjunction with the body of revolution for a single scatterer. For rough surface scattering, simulations results are compared with advanced integral equation model, small slope approximation, small perturbation method, and two scale model. For volume scattering by snow, results are compared with the bicontinuous dense media radiative transfer. For scattering by vegetation, results are compared with distorted Born approximation and radiative transfer equation. Comparisons are also made with experiments.
Read full abstract