Abstract

The field strength level of received signal and its statistical distributions are important in the study of signal propagation and scattering for wireless communication and remote sensing. In this paper, the scattering by random rough surface is analyzed by solving the solution of Maxwell equation. The method of moments is used to discretize the integral equation into the matrix equation. The sparse-matrix canonical grid method, which is a fast matrix solver, is applied in the analysis. Conjugate gradient (CG) method is adopted to solve the solution of matrix equation. With the solution of Maxwell equations, the magnitude of the scattered field is then used to predict the field statistics. Both time harmonic scattering and ultrawide-band (UWB) scattering are considered. For the time domain response, the electromagnetic scattered field in the vicinity of center of rough surfaces is first calculated in the frequency domain. Then the time domain signal is obtained by mean of the Fourier transform. The fading statistics are compared with that of the Rayleigh and Nakagami distributions. Results reveal that UWB signal exhibits less fading than the narrow band signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call